Enhanced Vision of Hazy Images Using Improved Depth Estimation and Color Analysis

نویسنده

  • Mr. Prasath
چکیده

Images are captured during inclement weather conditions such as fog, sand, and mist, that images are called as hazy images. Those images are frequently feature degraded visibility and unwanted color cast effects. Due to these effects, original image may not be clear. In such situation Laplacian-based visibility restoration approaches usually cannot adequately restore images due to poor estimation of haze thickness and the persistence of color cast problems. In proposed system, Enhanced refined transmission technique is used to solve effectively inadequate haze thickness estimation and alleviate color cast problems. It improves the performance quality of systems such as object recognition systems, obstacle detection systems, video surveillance systems, intelligent transportation Systems. Experimental results via qualitative and quantitative evaluations demonstrate that the proposed method can dramatically improve images captured during inclement weather conditions and produce results superior to those of other state-of-the-art methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Camera Pose Estimation in Unknown Environments using a Sequence of Wide-Baseline Monocular Images

In this paper, a feature-based technique for the camera pose estimation in a sequence of wide-baseline images has been proposed. Camera pose estimation is an important issue in many computer vision and robotics applications, such as, augmented reality and visual SLAM. The proposed method can track captured images taken by hand-held camera in room-sized workspaces with maximum scene depth of 3-4...

متن کامل

Estimation of Hand Skeletal Postures by Using Deep Convolutional Neural Networks

Hand posture estimation attracts researchers because of its many applications. Hand posture recognition systems simulate the hand postures by using mathematical algorithms. Convolutional neural networks have provided the best results in the hand posture recognition so far. In this paper, we propose a new method to estimate the hand skeletal posture by using deep convolutional neural networks. T...

متن کامل

استفاده از برآورد حالت‌های پویای دست مبتنی بر مدل، برای تقلید عملکرد بازوی انسان توسط ربات با داده‌های کینکت

Pose estimation is a process to identify how a human body and/or individual limbs are configured in a given scene. Hand pose estimation is an important research topic which has a variety of applications in human-computer interaction (HCI) scenarios, such as gesture recognition, animation synthesis and robot control. However, capturing the hand motion is quite a challenging task due to its high ...

متن کامل

Integration of Color Features and Artificial Neural Networks for In-field Recognition of Saffron Flower

ABSTRACT-Manual harvesting of saffron as a laborious and exhausting job; it not only raises production costs, but also reduces the quality due to contaminations. Saffron quality could be enhanced if automated harvesting is substituted. As the main step towards designing a saffron harvester robot, an appropriate algorithm was developed in this study based on image processing techniques to recogn...

متن کامل

A Total Bounded Variation Approach to Low Visibility Estimation on Expressways

Low visibility on expressways caused by heavy fog and haze is a main reason for traffic accidents. Real-time estimation of atmospheric visibility is an effective way to reduce traffic accident rates. With the development of computer technology, estimating atmospheric visibility via computer vision becomes a research focus. However, the estimation accuracy should be enhanced since fog and haze a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016